首页> 外文OA文献 >Optimal Auction For Edge Computing Resource Management in Mobile Blockchain Networks: A Deep Learning Approach
【2h】

Optimal Auction For Edge Computing Resource Management in Mobile Blockchain Networks: A Deep Learning Approach

机译:移动机器人边缘计算资源管理的最优拍卖   区块链网络:深度学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Blockchain has recently been applied in many applications such as bitcoin,smart grid, and Internet of Things (IoT) as a public ledger of transactions.However, the use of blockchain in mobile environments is still limited becausethe mining process consumes too much computing and energy resources on mobiledevices. Edge computing offered by the Edge Computing Service Provider can beadopted as a viable solution for offloading the mining tasks from the mobiledevices, i.e., miners, in the mobile blockchain environment. However, amechanism needs to be designed for edge resource allocation to maximize therevenue for the Edge Computing Service Provider and to ensure incentivecompatibility and individual rationality is still open. In this paper, wedevelop an optimal auction based on deep learning for the edge resourceallocation. Specifically, we construct a multi-layer neural networkarchitecture based on an analytical solution of the optimal auction. The neuralnetworks first perform monotone transformations of the miners' bids. Then, theycalculate allocation and conditional payment rules for the miners. We usevaluations of the miners as the data training to adjust parameters of theneural networks so as to optimize the loss function which is the expected,negated revenue of the Edge Computing Service Provider. We show theexperimental results to confirm the benefits of using the deep learning forderiving the optimal auction for mobile blockchain with high revenue
机译:区块链最近已作为交易的公共账目应用在比特币,智能网格和物联网(IoT)等许多应用程序中,但是由于挖掘过程会消耗大量计算和能源,因此在移动环境中使用区块链仍然受到限制移动设备上的资源。可以采用边缘计算服务提供商提供的边缘计算作为一种可行的解决方案,以减轻移动区块链环境中移动设备(即矿工)的挖掘任务的负担。但是,需要为边缘资源分配设计机制,以使边缘计算服务提供商的收益最大化,并确保激励兼容性和个人理性仍然开放。在本文中,我们针对边缘资源分配开发了基于深度学习的最优拍卖。具体而言,我们基于最优拍卖的解析解决方案构建了多层神经网络体系结构。神经网络首先执行矿工出价的单调变换。然后,他们为矿工计算分配和有条件的支付规则。我们使用矿工的评估作为数据训练来调整神经网络的参数,以优化损失函数,这是边缘计算服务提供商的预期负收益。我们展示了实验结果,以确认使用深度学习为高收入的移动区块链推导最佳拍卖的好处

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号